Matching the quark model to the $1 / \mathrm{Nc}$ expansion

Carlos Schat

Ohio University
 University of Buenos Aires - CONICET

Example: The masses for $L=1$

Masso oprator: $H_{\text {mase }}=\sum C_{i} 0_{i}$ powercountine natural size

Building blocks for the mass operator:
SU(4) generators acting on the core

$$
S_{c}^{i}=\sum_{\alpha=1}^{N_{c}-1} s_{(\alpha)}^{i}, \quad T_{c}^{a}=\sum_{\alpha=1}^{N_{c}-1} t_{(\alpha)}^{a}, \quad G_{c}^{i a}=\sum_{\alpha=1}^{N_{c}-1} s_{(\alpha)}^{i} t_{(\alpha)}^{a}
$$

and on the excited quark
$s^{i}, t^{a}, g^{i a}$ spin-flavor
l^{i} orbital degrees of freedom

Including I/Nc and SU(3)

Including 1/Nc and SU(3)

C.S., J.L.Goity and N.N.Scoccola, PRL88, 102002 (2002).

The Isgur-Karl model revisited

 L.Galeta, D.Pirjol, C.S., Phys.Rev. 080,116004 (2009)confining potential + hyperfine interaction:

$$
\begin{gathered}
\mathcal{H}_{I K}=H_{0}+\mathcal{H}_{\text {hyp }} \\
\mathcal{H}_{\text {hyp }}=A \sum_{i<j}\left[\frac{8 \pi}{3} \vec{s}_{i} \cdot \vec{s}_{j} \delta^{(3)}\left(\vec{r}_{i j}\right)+\frac{1}{r_{i j}^{3}}\left(3 \vec{s}_{i} \cdot \hat{r}_{i j} \vec{s}_{j} \cdot \hat{r}_{i j}-\vec{s}_{i} \cdot \vec{s}_{j}\right)\right]
\end{gathered}
$$

Matching: find c_{i} and O_{i}

$$
\langle B| \mathcal{H}_{\mathrm{hyp}}|B\rangle=\sum_{i} c_{i}\langle\Phi(J S I)| O_{i}|\Phi(J S I)\rangle
$$

IK model matching

$$
\langle B| \mathcal{H}_{\mathrm{hyp}}|B\rangle=\sum_{i} c_{i}\langle\Phi(J S I)| O_{i}|\Phi(J S I)\rangle
$$

The result of the matching is

$$
\hat{M}=c_{0}+a S_{c}^{2}+b L_{2}^{a b}\left\{S_{c}^{a}, S_{c}^{b}\right\}+c L_{2}^{a b}\left\{s_{1}^{a}, S_{c}^{b}\right\}
$$

$$
\begin{array}{lr}
a=\frac{1}{2}\left\langle R_{S}\right\rangle, & \text { for a contact interaction: } \\
b=\frac{1}{12}\left\langle Q_{S}\right\rangle-\frac{1}{6}\left\langle Q_{M S}\right\rangle, & \\
c=\frac{1}{6}\left\langle Q_{M S}\right\rangle=-\left\langle R_{S}\right\rangle+\frac{1}{6}\left\langle Q_{M S}\right\rangle . & \text { spatial integrals }
\end{array}
$$

The operators that appear are $\mathrm{O}_{1}, \mathrm{O}_{6}, \mathrm{O}_{8}, \mathrm{O}_{17}$

IK mass matrix

$$
\begin{aligned}
& M_{1 / 2}=\left(\begin{array}{cc}
c_{0}+a & -\frac{5}{3} b+\frac{5}{6} c \\
-\frac{5}{3} b+\frac{5}{6} c & c_{0}+2 a+\frac{5}{3}(b+c)
\end{array}\right), \\
& M_{3 / 2}=\left(\begin{array}{cc}
c_{0}+a & \frac{\sqrt{10}}{6} b-\frac{\sqrt{10}}{12} c \\
\frac{\sqrt{10}}{6} b-\frac{\sqrt{10}}{12} c & c_{0}+2 a-\frac{4}{3}(b+c)
\end{array}\right), \\
& M_{5 / 2}=c_{0}+2 a+\frac{1}{3}(b+c) \\
& \Delta_{1 / 2}=\Delta_{3 / 2}=c_{0}+2 a
\end{aligned}
$$

The spatial integrals can be computed explicitly in the original IK model with harmonic confinement:

$$
\begin{gathered}
a=\frac{1}{2} \delta, \quad b=\frac{1}{20} \delta, \quad c=-\frac{1}{5} \delta \\
\delta=M_{\Delta}-M_{N} \sim 300 \mathrm{MeV}
\end{gathered}
$$

One gluon exchange model

The QCD Breit-Wigner interaction

$$
\begin{array}{cl}
\mathcal{H}=\sum_{i<j} V_{i j} & V=V_{s s}+V_{q}+V_{s o} \\
V_{s s}=\frac{16 \pi \alpha_{s}}{9} \frac{1}{m_{i} m_{j}} \vec{s}_{i} \cdot \vec{s}_{j} \delta\left(\vec{r}_{i j}\right) & \text { Spin-spin } \\
V_{q}= & \frac{2 \alpha_{s}}{3 r_{i j}^{3}} \frac{1}{m_{i} m_{j}}\left[\frac{3}{r_{i j}^{2}}\left(\vec{r}_{i j} \cdot \vec{s}_{i}\right)\left(\vec{r}_{i j} \cdot \vec{s}_{j}\right)-\left(\vec{s}_{i} \cdot \vec{s}_{j}\right)\right] \quad \text { Quadrupole } \\
V_{s o}=\frac{\alpha_{s}}{3 r_{i j}^{3}}\left[\frac{1}{m_{i}^{2}}\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{i}-\frac{1}{m_{j}^{2}}\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{j} \quad\right. \text { Spin-orbit } \\
& \left.\quad \frac{2}{m_{i} m_{j}}\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{j}-\frac{2}{m_{i} m_{j}}\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{i}\right]
\end{array}
$$

One gluon exchange

more general

$$
\begin{aligned}
V_{s s}= & \sum_{i<j=1}^{N} f_{0}\left(r_{i j}\right) \vec{s}_{i} \cdot \vec{s}_{j} \\
V_{q}= & \sum_{i<j=1}^{N} f_{2}\left(r_{i j}\right)\left[3\left(\hat{r}_{i j} \cdot \vec{s}_{i}\right)\left(\hat{r}_{i j} \cdot \vec{s}_{j}\right)-\left(\vec{s}_{i} \cdot \vec{s}_{j}\right)\right] \\
V_{s o}= & \sum_{i<j=1}^{N} f_{1}\left(r_{i j}\right)\left[\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{i}-\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{j}\right] \\
& \left.\quad+2\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{j}-2\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{j}\right]
\end{aligned}
$$

One pion exchange

$$
\begin{aligned}
V_{s s}= & \sum_{i<j=1}^{N} g_{0}\left(r_{i j}\right) \vec{s}_{i} \cdot \vec{s}_{j} t_{i}^{a} t_{j}^{a} \\
V_{q}= & \sum_{i<j=1}^{N} g_{2}\left(r_{i j}\right)\left[3\left(\hat{r}_{i j} \cdot \vec{s}_{i}\right)\left(\hat{r}_{i j} \cdot \vec{s}_{j}\right)-\left(\vec{s}_{i} \cdot \vec{s}_{j}\right)\right] t_{i}^{a} t_{j}^{a} \\
V_{s o}= & \sum_{i<j=1}^{N} g_{1}\left(r_{i j}\right)\left[\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{i}-\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{j}\right. \\
& \left.+2\left(\vec{r}_{i j} \times \vec{p}_{i}\right) \cdot \vec{s}_{j}-2\left(\vec{r}_{i j} \times \vec{p}_{j}\right) \cdot \vec{s}_{j}\right] t_{i}^{a} t_{j}^{a}
\end{aligned}
$$

Consider all possible 2-body interactions

D.Pirjol, C.S., Phys.Rev.Lett.102:152002(2009)

The most general 2-body quark interaction

Complete list of 2-body spin-flavor quark operators, and their projection onto irreps of $S_{3}^{\mathrm{sp}-\mathrm{f}}$

Operator	$\mathcal{O}_{i j}$	O_{S}	OMS
Scalar	$\begin{gathered} 1 \\ t_{i}^{a} t_{j}^{a} \\ \vec{s}_{i} \cdot \vec{s}_{j} \\ \vec{s}_{i} \cdot \vec{s}_{j} t_{i}^{a} a_{j}^{a} \end{gathered}$	$\begin{gathered} 1 \\ T^{2}-3 C_{2}(F) \\ \vec{S}^{2}-\frac{9}{4} \\ G^{2}-\frac{9}{4} C_{2}(F) \end{gathered}$	$\begin{gathered} T^{2}-3 t_{1} T_{c}-3 C_{2}(F) \\ \vec{S}^{2}-3 \vec{s}_{1} \cdot \vec{S}_{c}-\frac{9}{4} \\ 3 g_{1} G_{c}-G^{2}+\frac{9}{4} C_{2}(F) \end{gathered}$
Vector (symm) Vector (anti)	$\begin{gathered} \vec{s}_{i}+\vec{s}_{j} \\ \left(\vec{s}_{i}+\vec{s}_{j}\right) t_{i}^{a} t_{j}^{a} \\ \vec{s}_{i}-\vec{s}_{j} \\ \left(\vec{s}_{i}-\vec{s}_{j}\right) t_{i}^{a} t_{j}^{a} \\ \hline \end{gathered}$	$\begin{gathered} \vec{L} \cdot \vec{S} \\ \frac{1}{2} L^{i}\left\{G^{i a}, T^{a}\right\}-C_{2}(F) L^{i} S^{i} \end{gathered}$	$\begin{gathered} 3 \vec{L} \cdot \vec{s}-\vec{L} \cdot \vec{S} \\ -\frac{1}{2} L^{i} S_{c}^{i}+L^{i} g_{1}^{i a} T_{c}^{a}+L^{i} t_{1}^{a} G_{c}^{i a} \\ 3 \vec{L} \cdot \vec{S}-\vec{L} \cdot \vec{S} \\ L^{i} g_{1}^{i a} T_{c}^{a}-L^{i} t_{1}^{a} G_{c}^{i a} \\ \hline \end{gathered}$
Tensor (symm) Tensor (anti)	$\begin{aligned} \left\{s_{i}^{a}, s_{j}^{b}\right\} \\ \left\{s_{s}^{a}, s_{i}^{b}\right\} t_{t}^{c} t_{j}^{c} \\ {\left[s_{i}^{a}, s_{j}^{b}\right.} \\ {\left[s_{i}^{a}, s_{j}^{b}\right]_{i}^{c} t_{j}^{c} } \\ \hline \end{aligned}$	$\begin{gathered} L_{2}^{i j}\left\{S^{i}, S^{j}\right\} \\ L_{2}^{i j}\left\{G^{i a}, G^{j a}\right\} \end{gathered}$	$\begin{gathered} 3 L_{i j}^{i j}\left\{s^{i}, S^{j j}\right\}-L_{2 j i j i j}^{i_{2}^{i j}}\left\{S_{2}^{i}, S^{j}\right\} \\ L_{2}^{i j} g_{1}^{i a} G_{c}^{j a}-\frac{1}{4} L_{2}^{j i}\left\{S_{c}^{i}, S_{c}^{j}\right\} \\ 0 \end{gathered}$

$C_{2}(F)=\frac{F^{2}-1}{2 F}$
[Contribute on S, MS states] [Contribute on MS states]

Complete basis of 1 /Nc operators induced by 2-body quark operators
spin-spin

$$
\begin{aligned}
& O_{1}=T^{2} \\
& O_{2}=\vec{S}_{c}^{2} \\
& O_{3}=\vec{s}_{1} \cdot \vec{S}_{c}
\end{aligned}
$$

spin-orbit
$O_{4}=\vec{L} \cdot \vec{S}_{c}$
$O_{8}=L_{2}^{i j}\left\{S_{c}^{i}, S_{c}^{j}\right\}$
$O_{5}=\vec{L} \cdot \vec{s}_{1}$
$O_{9}=L_{2}^{i j} s_{1}^{i} S_{c}^{j}$
$O_{6}=L^{i} t_{1}^{a} G_{c}^{i a}$
$O_{10}=L_{2}^{i j} g_{1}^{i a} G_{c}^{j a}$

Hadronic mass matrix (L=1 states)

$$
N_{i}^{*}=\sum_{i=0}^{10} \hat{M}_{i j} c_{j}
$$

$$
N_{i}^{*}=\left(N_{1 / 2}, N_{1 / 2}^{\prime}, N_{1 / 2}-N_{1 / 2}^{\prime}, N_{3 / 2}, N_{3 / 2}^{\prime}, N_{3 / 2}-N_{3 / 2}^{\prime}, N_{5 / 2}, \Delta_{1 / 2}, \Delta_{3 / 2}, \Lambda_{1 / 2}, \Lambda_{3 / 2}\right)
$$

Valid for any model with only 2-body quark interactions.
The rank o

Two new mass relations

\#l requires only isospin symmetry

$$
\frac{1}{2}(N(1535)+N(1650))+\frac{1}{2}(N(1535)-N(1650))\left(3 \cos 2 \theta_{N 1}+\sin 2 \theta_{N 1}\right)
$$

$$
-\frac{7}{5}(N(1520)+N(1700))+(N(1520)-N(1700))\left[-\frac{3}{5} \cos 2 \theta_{N 3}+\sqrt{\frac{5}{2}} \sin 2 \theta_{N 3}\right]=-2 \Delta_{1 / 2}+2 \Delta_{3 / 2}-\frac{9}{5} N_{5 / 2}
$$

\#2 includes SU(3) breaking

$$
\begin{aligned}
\bar{\Lambda}= & \frac{1}{6}(N(1535)+N(1650))+\frac{17}{15}(N(1520)+N(1700))-\frac{3}{5} N_{5 / 2}(1675)-\Delta_{1 / 2}(1620) \\
& -\frac{1}{6}(N(1535)-N(1650))\left(\cos 2 \theta_{N 1}+\sin 2 \theta_{N 1}\right)+(N(1520)-N(1700))\left(\frac{13}{15} \cos 2 \theta_{N 3}-\frac{1}{3} \sqrt{\frac{5}{2}} \sin 2 \theta_{N 3}\right)
\end{aligned}
$$

First universal relation

Correlation between mixing angles in the $J=1 / 2$ and $3 / 2$ sectors

Requires only isospin symmetry

$$
N^{*} \rightarrow N \pi \text { data }
$$

- hep-ph/9812440
\square hep-ph/0411092
- Compare with direct determinations of the mixing angles \rightarrow test for the presence of 3-body quark interactions

Tests for specific models of 2-body quark interactions, e.g. OGE model

Second universal relation

Expresses the spin-weighted SU(3) singlet mass Takes into account SU(3) symmetry breaking

$$
\bar{\Lambda}=\frac{1}{3} \Lambda_{1 / 2}+\frac{2}{3} \Lambda_{3 / 2}
$$

Combining the two universal relations gives a determination of the mixing angles from hadron masses alone

Dynamics

D.Pirjol, C.S.
 all scalar interactions
 $$
V_{s}=\sum_{i<j} f_{0}\left(r_{i j}\right) \begin{cases}\vec{s}_{i} \cdot \vec{s}_{j} & \text { OGE } \\ \vec{s}_{i} \cdot \vec{s}_{j} t_{i}^{a} \cdot t_{j}^{a} & \text { OPE } \\ \ldots & \ldots\end{cases}
$$
 match on

$$
M=c_{0}+c_{1} T^{2}+c_{2} S_{c}^{2}+c_{3} \vec{s}_{1} \cdot \vec{S}_{c}+\cdots
$$

$$
A=c_{1}-\frac{1}{2} c_{3}
$$

$$
B=c_{2}+c_{3}
$$

Dynamical suppression

$$
A / B=O(1)
$$

A=0 for a ALL contact interactions: $f_{0}\left(r_{i j}\right)=\delta\left(r_{i j}\right)$
$\mathbf{A}=0$ for OPE, even if spread out: $\quad f_{0}\left(r_{i j}\right) \neq \delta\left(r_{i j}\right)$
In particular, OPE and massless OGE cannot be distinguished here.

Conclusions

* The coefficients of the $1 / \mathrm{Nc}$ expansion can be matched to overlap integrals in quark models
* Flavor dependent interactions are important
* Two new mass relations for N*'s that constrain the mixing angles and test for 3 -body forces

